Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Effect Effects of Auricularia auricula Polysaccharides on Exhaustive Swimming Exercise-Induced Oxidative Stress in Mice

Haitao Hao

Department of Physical Education and Military Training, China Jiliang University, Hangzhou 310018, PR China;

For correspondence:-     Email: yanzjfeiwei@163.com   Tel:+8613588345075

Received: 11 June 2014        Accepted: 16 October 2014        Published: 24 November 2014

Citation: Hao H. Effect Effects of Auricularia auricula Polysaccharides on Exhaustive Swimming Exercise-Induced Oxidative Stress in Mice. Trop J Pharm Res 2014; 13(11):1845-1851 doi: 10.4314/tjpr.v13i11.11

© 2014 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To determine the effects of polysaccharides from Auricularia auricula (AAPs) on exercise-induced oxidative stress in mice.
Methods: The animals were divided into four groups: control (C), low, middle, and high-dose AAPs-treated (LA, MA, and HA, respectively). C group received physiological saline solution while AAPs-treated groups received different doses of AAPs (50, 100, and 200 mg/kg) via oral gavage once a day for 28 days, followed by an exhaustive swimming exercise. Swimming times were recorded for each animal after which malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were determined.
Results: Exhaustive swimming times were significantly prolonged in all AAPs-treated animals as compared with controls. In all treatment groups, serum and muscle MDA levels were significantly lower than those in the C group, whereas in the MA- and HA-treated groups, a decrease was also seen for liver MDA levels. Furthermore, the concentration of 8-OHdG was significantly reduced in serum, liver, and muscle in all AAPs-treated animals. In contrast, all AAPs treatment groups exhibited significantly higher SOD activity in serum, liver, and muscle. Serum and liver GPx activity was also significantly increased in all animals receiving AAPs treatment, with MA- and HA-treated mice exhibiting an additional augmented GPx activity in muscle. Serum and liver catalase activities in the MA and HA-treated groups, and catalase activity in muscle in all AAPs treatment cohorts, were significantly higher.
Conclusion: Polysaccharides from Auricularia auricula enhance exercise endurance and possess protective effects against exhaustive swimming exercise-induced oxidative stress in mice.

Keywords: Exhaustive swimming, Malondialdehyde, 8-Hydroxydeoxyguanosine, Superoxide dismutase, Glutathione peroxidase, Catalase

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates